Combining Multiple Models of Computation for
Scheduling and Allocation

D. Ziegenbein, R. Ernst, K. Richter J. Teich, L. Thiele
TU Braunschweig ETH Zurich

co-simulation
co-verification

Abstract

Many applications include a variety of functions from differ-
ent domains. Therefore, they are best modeled with a combi-
nation of different modeling languages. For a sound design
process and improved design space utilization, these different
input models should be mapped to a common representation.
In this paper, we present a common internal representation
that integrates the aspects of several models of computation
and is targeted to scheduling and allocation. The represen- back
tation is explained using an example combining a classical annotation
process model as used in real-time operating systems (RTOS)
with the synchronous data flow model (SDF).

domain specifig
optimizations,;

domain specifig
optimizations,

extraction
& mapping

interfacing &
environment

back
annotation

common
internal design
representation

scheduling & allocation
(HW/SW partitioning)

1 Introduction

There are numerous system specification and modeling lan-

guages with fundamental differences in their underlying mod- Figure 1: Intended Application

els of computation, such as event driven computation or data

flow. Many complex designs use more than one modeling lanenotonic analysis and scheduling [4] (RMS/DMS) which
guage to describe system functions of different characteiswidely used in real-time system design. Processes are ex-
tics. Since these functions are rarely completely independeiisted periodically with fixed rate constraints, with identi-
system simulation, verification and implementation must real deadlines in each period. Latency times are limited by
gard the combination of such different models of computére process periods chosen by the designer. While the orig-
tion. inal model regards independent processes and single proces-

In this work, we present an internal representation whigbrs only, generalized RMS (GRMS) considers synchroniza-
shall enable scheduling and allocation (or hardware/softwées aspects which includes access to shared variables and
partitioning, resg) of systems described with more than ongultiprocessors (an overview of the numerous approaches is
model of computation. Fig. 1 shows the intended applicatigiven in [5]). More recent work adds explicit communication
of this representation. The different system parts may Ipetween processes [9] to include communication scheduling
modeled and optimized independently. Input level optimizand reduce performance requirements, or derives rate con-
tion uses domain specific techniques, such as e. g. transégfaints automatically [1]. We want to include the original
mations used in digital signal processing [6]. Then, the infanodel, the model with communication and, finally a model
mation useful for scheduling and allocation shall be extract@éth upper and lower bounds on communication latencies to
from the models and mapped to the common internal repaecount forconditional communicatiofcommunication de-
sentation. After scheduling and allocation, the results shallfgnding on the result of evaluating an if-then-else construct)
annotated back to the input level to support interactive desighich is necessary to react to sporadic events and to imple-
optimization. Fig. 1 shows that verification and simulatioment data dependent behavior (examples: packet transfer de-
are treated as independent tasks with their own representaiending on packet header, error message if broken sensor
which takes some burden from the internal representationéet.). Alluding to its application to real-time operating sys-
scheduling and allocation. tems we will call it the RTOS model.

This sketchy overview helps to derive the requirements The second example considers synchronous data flow
for this internal representation. For illustration, we wilraphs (SDF) which are used in digital signal processing [3].
use two examples of input languages. The first exampleiisSDF, the number of data tokens produced and consumed
the process model underlying rate monotonic and deadlpw execution of a process is constant and fixed at compile-

, time (unconditional communication). The SDF design repre-

*This part of the work was supported by the German DFG.

1Depending on the design context, hardware/software partitioning Zﬁ%n_ta'qon_ eﬁ'c'e’?“y sup_ports plpellnlng, retlmmg and buffer
allocation are related tasks which will not further be distinguished optimization but is restricted to model only static data flow.

It should be noted that SDF in its original form was 2 The Internal Representation

model of computation to represent concurrency and was later
extended to support scheduling. The RTOS model, on fHeis section describes the concepts of our common internal
other hand, has originally only been defined as a basis di@sign representation. To demonstrate some concepts of the
scheduling of independent tasks and was extended to g@presentation we use an example of a remote motor con-
port modeling of communicating processes. The two mod#igller. The system collects message parts from a bus and
can be used to illustrate the design information required fests them for an error/y), decodes the collected message
scheduling and allocation: (P2) and sends a control word to the motor control lo&p)(
A description of the system, in which procesdgsand P

re specified as periodic communicating processes (RTOS
del) and proces#; as an SDF process, is depicted in
. 2. Note that there is a maximum latency constraipt;
t constrains the time between the reception of a message
rt and the production of an error signal, i. e. the completion
aDroce55131.

e Execution time or I/O timing of processe$his infor-
mation is target architecture dependent and is typic
obtained by system analysis and estimation. In gene%[ig
execution times are given as time intervals due to d
dependent process execution times. In both examp
I/0O timing has clear semantics with all input data read
the beginning of a process execution and all output dat
written in the end. [S —— B

¢ S tlat,l

e Information on ready times and deadlineBhis infor- '115‘;&

mation allows to determine the cost of resource sharing \C@) s

and the computing requirements. Here, we see major ﬁ

differences between both models. In SDF, a process is 4, -~ PL: businterface control _

ready (can be executed) when all input buffers contain | Ot S

a sufficient number of data tokens. There is no explicit P e e et then

deadline, but deadlines can be derived from throughput i praliad

and memory requirements using mobility or "urgency” endif;

[2] criteria which both depend on the target architec- 16 - ¢, -~ P2 bus message processing
ture rather than on the input description. In the RTOS L
model, a process is ready at the beginning of a period

and the deadline is explicitly defined. The two examples tg@ @

demonstrate that the input models provide the required
information in different ways which must be unified in a —] (-

common internal representation. T

e Information on the amount of communicated data P3: motor control loop
There are again major differences. In SDF, communi-
cation is determinate and data independent. Bufferingof Figure 2: Remote Motor Controller (RTOS, SDF)
communicated data is permitted to increase throughput
while in the RTOS model, communication can be con-
ditional and data buffering is typically not considered .
even not permitted to cor?trol I%Ft)encyytimes. Oé-l Basic Model

The approach to a common internal representation’ide basic model consists of processes that may have local
based on simple basic constructs which are enhanced bydsa enabling them to have internal states. A side effect of
notations which capture the details of the input model of coflowing local data is that shared static data objects can be
putation. Each input language and its underlying model@deled by processes as well. The processes communicate
mapped to a specific set of annotations. The main issue isWié& each other trough unidirectional buffered channels that
consistency of these annotations in order to allow schedul W a FIFO-like behavior. The basic model can be repre-
and allocation across input language semantics. This paydtted by anodel graph
will focus on the basic constructs and annotations for sys- . . .
tems with a static set of processes, i.e. a set of proceé@gn't'on 1 (Model Graph)
that does not change at run time. Both example languad&§model graph's a directed bipartite grapti = (P, C', E)
are of this kind. Systems with a dynamically changing s&{'€r¢
of processes require the concept of system states and systenp denotes the set @focess nodes
state transitions and will be the focus of a later paper as well
as additional annotations for increasing scheduling efficency® C' denotes the set ehannel nodesand
;asr:g [c7{J;1pturing incomplete specifications using nondeterminy E C (P xC)U(C x P) denotes the set of edges.

There are many scheduling techniques, i.e. preemptive Processes as well as channels are represented by nodes to
or non preemptive scheduling, scheduling with dynamic enable refinement through hierarchical extension.
static priorities, event driven or periodic process execution.

The scheduling technique is part of the design space. Rathes Eyacution Model

than covering all these techniques, we have selected one to

demonstrate the completeness of the internal representafifiar defining the structure of the internal representation, we
with respect to the two input models. now introduce the underlyingrocess execution mod#iat

is based on activation by data availability, i.e. a processsigecified. Together with the data size of a token, the absolute
activated if its required input data is present. The event-drivemmmunicated amount of data can be easily calculated.
computation as well as the data flow model of computation

are both based on activation by data availability since evepistinition 2 (Data Rates)

can be considered as a special kind of data. But as we il Inputs(p) = {c € C | e = (¢, p) € E} denote the set of

show in section 2.4 other activation principles e. g. activatigihyt channelof procesg € P andOutputs(p) = {c € C |
by periodicity constraints can be transformed into activation- (;,) ¢ £} denote the set afutput channelsf p.

by data availability, too. _ _ _ Associated with each procesedep € P and each input
There are three points of time during the execution of 0Bfannek: € Inputs(p), there is annput data rater. (k) that
process instance that need to be distinguished: denotes the number of data tokens the propessnsumes

from the channet at its kth execution. This rate.(k) is
constrained by an intervadl, = [rc min, Tc,mas], SUCh that
Vk : r.(k) € R.. Analogously foreach output channel

e activation timef,.;
required input data is present; process gets activated

e starting timet ;¢ ¢ € Outputs(p), there is aroutput data rates.(k) and a
resource is taken; input data is read; process starts es@istraining intervab. = [sc,min, Sc,maz]-
cution

Furthermore, we need to define some constructs to keep
e completion timé ., track of the tokens and to model the availability of data.
input data is consumed (i. e. destructed); output data is
written; resource is released; process execution is caDfinition 3 (Data on Channels)

pleted Associated with each channeke C, there are the numbers

Note that the process execution’s effect becomes visible%ndc’ andd., ., where

the channels as one atomic action at the end of execution. . denotes the initial number of data tokens
Since communication may also consume time, the time & %¢ initiafnu ’
token is put on a channel,,, of writing process) need not

equal the time this token is available for being read and, thus,' d. denotes the total number of data tokens at a given

for activating the succeeding process. Therefore, this time is point of time,

defined as theutput availability timéf ;... e d. ., denotes the number of data tokens available for
activation of the succeeding process at a given point of

2.3 Annotations time

The information required for scheduling and allocation is ana channet. Note that all three numbers may be uncertain.
notated to the corresponding graph elements. In our model,

this information may be uncertain due to the following rea s 5 Timing

sons: e

Scheduling and allocation require the modeling of latency

times of processes and communication channels. Usually,

a different function and, thus, communicate a diﬁerem o, ;
= ’ e . ey are gathered by a timing analysis tool (e.g. [8]) or es-
amount of dataqonditional communicatigrat each in- timgted. g y g y (e.9. 8]

vocation depending on how it was activated, e.g. com
puting mode, error handling, etc.

e Data dependent functionalityA process may perform

Definition 4 (Latency Times)

e Incomplete specification Apart from uncertainties Associated with each procegs € P, there is alatency
caused by the environment, it may be desirable to sptielat, (k) € Lat, = [latp min, lat, ma:] wherelaty, pin
ify non-determinism in certain cases on purpose. [laly 4] denotes the lower [upper] bound on the execution

_ _ time ¢ comp p(k) — tstart p(k)) Of instance: of processp.
Due to these facts, the annot_ated information need not to Analogously, associated with each channel C, there
be constant but can be constre_uned by an upper and loyses Jatency timéat.(k) € Lat. = [latc min, lat, may) that
bound. Therefore, the annotations are modeled by (unggits the communication time §, (k) — tcomp (k) where

tainty) intervals. Stochastic processeg) are introduced to p writes on channael) for a token on channel
capture the uncertain behavior. These stochastic processes are

discrete regarding the execution indexnd its domains are Note that latency times are resource dependent. There-
the (uncertainty) intervals of its informatioXi. This index- fore, uncertain latencies denote upper and lower timing
ing helps defining activation rules and allows easy transitibaunds for any (remaining) feasible mapping of processes
to (partially) deterministic behavior in later design steps. and channels to possible resources. During scheduling and al-

location, these uncertainties are (gradually) reduced by map-
2.3.1 Communication ping decisions. . . .

Since we do not restrict the communication to a single

For communication scheduling and for the derivation of achehavior, the latency time for channels depends also on the
vation rules of processes (e. g. synchronous data flow [3]), th®sen method of communication (e. g. burst or packet trans-
amount of data to be communicated between two processession) and on the amount of data to be communicated. A
has to be known. Therefore,data ratedenoting the num- detailed communication modeling is supported by enabling a
ber of data tokens communicated at a process executiohiéarchical refinement of a channel.

2.3.3 Virtual Components 2.5 Update Rules

For modeling purposes, we introduce the conceptimfial- Based on the chosen activation rulpdate rulexan be spec-
ity for processes and channels. These do not have to beifiad to formally define the semantics of our representation.
plemented. Their importance will be understood from later

examples. Definition 7 (Update Rules)
- o Initially, d. := d.N¢ € C' andN, := 0¥p € P holds. The
Definition 5 (Virtuality) value ofN,, at a certain time denotes that procgss P has

Associated with each procegse P and each channel € completed alreadyy, activations.

C, there is avirtuality flagv € {true, false} which denotes b

the fact whether the process or channel is part of the systeth A proces® € P becomes activated (for th&/{ + 1)st
to be implementedu(:= false) or has been introduced for time) at a certain time, ifi, (N, + 1) becomes true at
modeling purposes only (:= true). that time.

As can be seen in Fig. 3, virtual graph elements are visuz, A procesg € P may start execution, if it is activated.

alized by dotted lines. Note that virtual processes and chan-])
nels are mapped to dummy resources. 3. If procesy € P starts execution at time thenp com-
pletes at-+lat, (N, +1) and the followingipdate rules

2.4 Activation are executed:

An activation rule determines when each process is ready for o Np:i=Np+ 1)
execution and can be scheduled. As mentioned earlier, our @ tcomp,p(Np) := 7+ lat, (N,) wheretcomp »(Np)

model is based on activation by data availability. is the completion time of the¥,, th activation of.

o o e One of the activation patterns witly (p, N,) =
Definition 6 (Activation Rule) o true is selected. If there are several true activa-
Associated with each procegse P and each activatioh, tion patterns and thus several possible data con-
there is an activation rule sumptions, one is chosen randomly. Let the cor-

Ay (k) = \/ aj(p, k) responding index be denotegd Then we have

Tc(Np) S [Tc,mm, vj(ca k)]
e Ve e Inputs(p) tde i=d. — ro(Np)

J=1..Fmaz (P)

that enables thith activation ofp if and only if one or more

of jmas(p) activation patterns e Ve € Outputs(p) : de :=de + s.(Np)
, _ , These rules are executed sequentially, but the whole up-
a;(p, k) = /\ (de,av 2 v (e, k) date rule is considered as an atomic action.

c€lnputs(p)

At timet comp »(Np) + lat. (N,) the communication of
the written data on channele Outputs(p) completes
andd. qv = dc av + sc(Np).

is true. Each activation pattern secures that there are enouéh
available data tokend. ., on each mput channelc ¢
Inputs(p) for a set of possible combinations of data con-
sumptions.(k) € [min, v;(c, k)] withv; (¢, k) € R..

Evidently, the chosen activation rule is valid for data 02r'6 Environmental Modeling

event driven models of computation. In the following, we wilfhe modeling of embedded systems always has to include
show how other activation principles like periodic activatiomodeling of the environment and its data sources and sinks in
can be mapped onto the chosen activation rule using virtpafticular. The sources as well as the sinks can be modeled
processes and channels. by virtual processes. The communication between those en-
Periodic activationcan be modeled by a virtual channelironmental processes and system processes has to be imple-
¢, Starting and ending at the process to be activated. The prented. Therefore, the channels representing this communi-
cess has a static consumption and production rate of one datén are not virtual. Examples for environmental processes
token per execution for channgl. With one initial data to- are the sourc@;..,.,, or the sinkP,, ., in Fig. 3.
ken on the channeli, := 1) supporting the first activation,
each execution now enables its following activation. The time7 constraints
between two consecutive executions can be constrained by la-
tency constraints (to be introduced in section 2.7). So far, the notation and the semantics of the internal repre-
Another possible activation principle is thetivation by sentation have been introduced. It remains to explain how to
relative execution ratege. g. RTOS semantics: no exact panodelconstraintshat have to be fulfilled by all legal sched-
riodicity but constrained mobility intervals [4]). An examplailes. In this paper, we focus on timing constraints as the most
for this is process in Fig. 3 which has to be executed oncenportant type of constraints for scheduling. The extension
during every period6 - ¢; and, thus, once durints execu- of our model to feature other constraints is simple but may
tions of Py;m.. This is modeled by two virtual channel§{ require the addition of corresponding information to all pro-
and C1;) with preassigned tokens between both processessses (e.g. power consumption).
Thus, with its first executio®;;,,,. enables one activation of Conditional communication and activation based on com-
P> whose execution enables anothéractivations ofP,;,,,. municated data leads to conditional time constraints if con-
that lead to another activation &% etc. straining the time difference between two process executions.

Therefore, we associate timing constraints with productiéh Conclusion

and consumption times of data tokens. Since due to the

atomic process execution the time of consumption equals ¥he presented a common internal design representation that

time of process completion, this association is valid. integrates different models of computation regarding schedul-
Since our representation features hierarchy, we need ting and allocation. The example shows the capabilities of our

ing constraints over process chains, but for the sake of sipproach.

plicity in this paper, we restrict ourselves to timing constraints Only the basic concepts of our model have been intro-

for tokens that are produced and consumed by adjacent pheced. Other constructs to deal with system states, incom-

cess nodes. plete specification and memory allocation will be presented

later or can be previewed in [7].

Definition 8 (Latency Constraint) e

Associated with each channeé C, there may be an interval PR |

LC = [tiat, min, tiat, maz) that denotes #atency constraint ~— =¢ H H H H H H H H H H H H H H H H i

that limits the difference between the production titpgq

and the consumption timte, ., for all tokens on channel sparc

T] t/t,
5 10 15 16

Vb € {data tokens on channel ¢} :

tlat,mm S (tcons,b - tprod,b) S tlat,ma:v~ . .
o _ Figure 4: Gantt Diagram of Remote Motor Controller
An example how a latency constraint limits the life-

time of tokens on a channel can be seen at chaanglin

Fig. 3). Other timing constraints likeorrelation and rate

constraintsor even more complicated timing behavior liké&References

sporadic bursts of external events can be modeled using la-

tency constraints and virtual channels and processes. For{gk-A. Dasdan, A. Mathur, and R. K. Gupta. RATAN: A
ample, rate constraints can be modeled by a virtual channel tool for rate analysis and rate constraint debugging for
from the process to be constrained to itself with= 1, data embedded systems. Froceedings ED&TC '97pages
consumption and production rates bfand a latency con- 2-6, February 1997.

Straintftrate, trare) (€ G- Pscnsor I Fig. 3). [2] A. Kalavade and E. A. Lee. A global critical-
ity/local phase driven algorithm for the constrained hard-
ware/software partitioning problem. IRroceedings
Codes/CASHE '94pages 42—-49, 1994.

LC = [0, tyg 4]
[0,1]

[3] E. A. Lee and D.G. Messerschmitt. Static scheduling of
synchronous data flow programs for digital signal pro-
cessing. IEEE Transactions on Computer36(1), Jan-
uary 1987.

[4] C. Liu and J. Layland. Scheduling algorithm for multi-
programming in a hard-real-time environmedburnal
of the ACM pages 46-61, 1973.

[5] L. Sha, R. Rajkumar, and S. S. Sathaye. Generalized
rate monotonic scheduling theory: A framework for de-
veloping real-time systemsProceedings of the IEEE
82(1):68-82, January 1994.

[6] S. D. Stearns. Digital Signal Analysis Hayden Book
Company, New Jersey, 1975.

L. Thiele, J. Teich, and D. Ziegenbein. Funstate - func-
tions driven by state machines. Technical Report 33,
Computer Engineering and Communication Networks
Lab (TIK), Swiss Federal Institute of Technology (ETH)

3 Example Zirrich, January 1998.
W. Ye and R. Ernst. Embedded program timing analysis

Figure 3: Remote Motor Controller (our representation) 7]

One of several possible mappings of the remote motor cé%]- . . e 2
troller to our internal representation is depicted in Fig. 3. based on path clustering and architecture classification.

Note that the SDF in proceg; is mapped to three processes In Proceedings ICCAD '97San Jose, USA, 1997.

(Ps.1, P32 and P 3) while the state machine iR, is mapped [9] T. Yen and W. Wolf. Performance estimation for real-

to a single process (designer’s decision). _ time distributed embedded systems. Mmoceedings
A Gantt diagram for a static schedule and= 8 - ¢; is ICCD '95, pages 64—69, October 1995.

shown in Fig. 4. Only the resources for processes are shown

while channel and dummy resources are omitted.

